Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 24(12): 1116-1123, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058711

RESUMO

Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR-Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.


Assuntos
Domínio Catalítico/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/genética , Células-Tronco Embrionárias/citologia , Proteína de Replicação A/antagonistas & inibidores , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Replicação A/genética , Relação Estrutura-Atividade , Translocação Genética/genética , DNA Polimerase teta
2.
Mol Cell ; 60(3): 500-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26545079

RESUMO

Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively.


Assuntos
Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Amplificação de Genes , Sequências Repetidas Invertidas , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Quebras de DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Endodesoxirribonucleases/genética , Endonucleases/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica/genética , Isocromossomos/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 112(15): E1880-7, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25831494

RESUMO

The Mre11-Rad50-Xrs2/NBS1 (MRX/N) nuclease/ATPase complex plays structural and catalytic roles in the repair of DNA double-strand breaks (DSBs) and is the DNA damage sensor for Tel1/ATM kinase activation. Saccharomyces cerevisiae Sae2 can function with MRX to initiate 5'-3' end resection and also plays an important role in attenuation of DNA damage signaling. Here we describe a class of mre11 alleles that suppresses the DNA damage sensitivity of sae2Δ cells by accelerating turnover of Mre11 at DNA ends, shutting off the DNA damage checkpoint and allowing cell cycle progression. The mre11 alleles do not suppress the end resection or hairpin-opening defects of the sae2Δ mutant, indicating that these functions of Sae2 are not responsible for DNA damage resistance. The purified M(P110L)RX complex shows reduced binding to single- and double-stranded DNA in vitro relative to wild-type MRX, consistent with the increased turnover of Mre11 from damaged sites in vivo. Furthermore, overproduction of Mre11 causes DNA damage sensitivity only in the absence of Sae2. Together, these data suggest that it is the failure to remove Mre11 from DNA ends and attenuate Rad53 kinase signaling that causes hypersensitivity of sae2Δ cells to clastogens.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Exodesoxirribonucleases/genética , Microscopia de Fluorescência , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
4.
Bioessays ; 37(3): 305-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25400143

RESUMO

Replication protein A (RPA) is the main eukaryotic single-stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of nucleases, and directly interacts with other DNA processing proteins. Here, we discuss recent results supporting the idea that one function of RPA is to prevent annealing between short repeats that can lead to chromosome rearrangements by microhomology-mediated end joining or the formation of hairpin structures that are substrates for structure-selective nucleases. We suggest that replication fork catastrophe caused by depletion of RPA could result from cleavage of secondary structures by nucleases, and that failure to cleave hairpin structures formed at DNA ends could lead to gene amplification. These studies highlight the important role RPA plays in maintaining genome integrity.


Assuntos
Proteína de Replicação A/fisiologia , Animais , Pareamento de Bases , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Recombinação Homóloga , Humanos , Conformação de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico
5.
Nat Struct Mol Biol ; 21(4): 405-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24608368

RESUMO

Microhomology-mediated end joining (MMEJ) is a Ku- and ligase IV-independent mechanism for the repair of DNA double-strand breaks that contributes to chromosome rearrangements. Here we used a chromosomal end-joining assay to determine the genetic requirements for MMEJ in Saccharomyces cerevisiae. We found that end resection influences the ability to expose microhomologies; however, it is not rate limiting for MMEJ in wild-type cells. The frequency of MMEJ increased by up to 350-fold in rfa1 hypomorphic mutants, suggesting that replication protein A (RPA) bound to the single-stranded DNA (ssDNA) overhangs formed by resection prevents spontaneous annealing between microhomologies. In vitro, the mutant RPA complexes were unable to fully extend ssDNA and were compromised in their ability to prevent spontaneous annealing. We propose that the helix-destabilizing activity of RPA channels ssDNA intermediates from mutagenic MMEJ to error-free homologous recombination, thus preserving genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína de Replicação A/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase I/fisiologia , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...